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Abstract Tectonicmotion across the Los Angeles region is distributed across an intricate network of strike-slip
and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933M6.4 Long
Beach and 1994M6.7 Northridge events. Here we show that Los Angeles regional thrust, strike-slip, and
oblique faults are connected and move concurrently with measurable surface deformation, even in moderate
magnitude earthquakes, as part of a fault system that accommodates north-south shortening and westerly
tectonic escape of northern Los Angeles. The 28 March 2014 M5.1 La Habra earthquake occurred on a
northeast striking, northwest dipping left-lateral oblique thrust fault northeast of Los Angeles. We present
crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on
several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic
moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of
accumulated strain on still-locked deeper structures. A future M6.1–6.3 earthquake would account for the
accumulated strain. Such an event could occur on any one or several of these faults, which may not have
been identified by geologic surface mapping.

1. The 2014M 5.1 La Habra Earthquake

The M5.1 La Habra earthquake occurred on 28 March 2014 at a depth of ~5.85 km (33.9225°N, 117.9352°W)
beneath suburban La Habra at the northeastern margin of the Los Angeles basin [Wright, 1991] in southern
California. Global Positioning System (GPS) geodesy and interferometric synthetic aperture radar (InSAR)
show that the northern Los Angeles region is shortening at a rate of 4.5 ± 1mm/yr in a north-south direction
[Argus et al., 2005]. The style of tectonic deformation in the region is influenced by northwest trending right-
lateral strike-slip faults associated with the Peninsular Ranges and San Andreas plate boundary fault system,
and north-south shortening along north dipping thrust faults, often associated with oblique left-lateral
motion and east-west trending folds of the Transverse Ranges [Yeats, 2004]. Seismic hazard assessments
for the region have focused on major faults such as the strike-slip Newport-Inglewood fault that caused
the destructive 1933 Mw 6.4 Long Beach earthquake [Hauksson and Gross, 1991] and the blind thrust system
that generated the 1994 M6.7 Northridge earthquake [Walls et al., 1998].

The La Habra earthquake sequence occurred between the right-lateral strike-slip Whittier fault and the Puente
Hills thrust fault, above a regional decollement [Yang and Hauksson, 2011]. A surprising amount of damage
occurred, despite the moderate main shock magnitude and peak ground accelerations of 0.7g and 0.35g
northeast and southeast of and near the epicenter (USGS: Peak ground acceleration for La Habra earthquake,
http://earthquake.usgs.gov/earthquakes/shakemap/sc/shake/15481673/stationlist.html#sCE.13883). More than a
dozen water mains broke in La Habra and Fullerton alone [Tully and Casiano, 2014], and widespread damage to
infrastructure in Orange County exceeded $12M [Wiskol, 2014]. We documented 13 water main breaks, a gas line
break, and numerous pavement cracks associated with the earthquake sequence. Most of these were within a
6 km radius of the epicenter and mostly occurred outside of the earthquake zone of seismicity with about half
of the water main breaks occurring in the West Coyote Hills to the south (Figure 1).

The 5.85 km deep main shock was followed by a relatively shallow aftershock sequence extending upward
from a depth of 7 km to approximately 3 km below the communities of La Habra, Fullerton, and Brea. The
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northeast trend of aftershocks is consistent with one of the focal mechanism solutions, indicating main shock
rupture of a northeast striking, northwest dipping left-lateral oblique thrust fault. The largest aftershock,M4.1,
occurred on 29 March 2014 at a depth of 6.38 km (33.9563°N, 117.8970°W). Both events were widely felt in
Southern California, with residents reporting maximum main shock instrumental intensity of VII in the
La Habra and Brea epicentral area. The relatively strong shaking and large-area extent of reported motion
are consistent with the shallow depth of the sequence.

2. Geodetic Measurements
Indicate a Broad Pattern
of Crustal Deformation

We determined displacements that
occurred as a result of the 28 March
2014 M 5.1 La Habra earthquake
using GPS and Uninhabited Aerial
Vehicle Synthetic Aperture Radar
(UAVSAR) measurements. Both the
GPS and UAVSAR measurements
show a broader pattern of deforma-
tion than would be expected from a
M5.1 earthquake.

We used daily GPS positions pro-
duced by the University of Nevada,
Reno, within a 50 km radius of the
La Habra earthquake to estimate
offsets from the event [Blewitt et al.,
2013]. We averaged daily positions
for these 32 stations for 15 days
before the event and differenced
those from 14 day averages after

Figure 2. Displacements at the time of the La Habra earthquake for GPS sta-
tions within a 50 km radius of the epicenter (red circle around black dot near
SNHS). The error ellipses around the blue observed GPS vectors represent
95% confidence. Red arrows are the calculated vectors and green the model
residuals. Modeled faults are shown. The M5.1 main shock, M4.1 aftershock,
and M5.4 Chino Hills earthquake are noted by red circles around a black dot.

Figure 1. Setting of the La Habra earthquake. Red dots show locations of the M5.1 main shock, M4.1 aftershock, and M5.4
Chino earthquake. Relocated aftershocks are shown as green dots. Modeled faults are shown in brown with the heavier
reddish brown line denoting the bottom of the fault and labeled with italics. Water main breaks are shown as blue dots, a
gas line break as a red open circle, an observed fault kink band near TrojanWay as a triangle, and road cracks as red crosses.
Faults from the UCERF-3 models [Field et al., 2013] are shown as dark grey lines.
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the event. The GPS results (Figure 2) show a pattern of north-south shortening and westward motion aligned
with the center of the zone of convergence, which extends about 35 km north and 20 km south of the La
Habra earthquake epicenter. The band of westward extrusion is about 40 km wide, extending 25 km west
and 15 km east of the epicenter.

Since 2009, we have collected measurements from NASA’s UAVSAR L band radar instrument to monitor defor-
mation across the Los Angeles region. The Los Angeles regionwas selected in part to test earthquake forecasting
methodology [Rundle et al., 2002, 2003; Tiampo et al., 2002; Holliday et al., 2005, 2007], which indicated a high
probability of a>M5.0 earthquake at the front of the Transverse Ranges in the Chino Hills area. North and south
looking UAVSAR lines were flown before the earthquake on 22 January 2014. The north looking line was remea-
sured 3days after the earthquake on 31March 2014, and the south looking line was remeasured aweek after the
event on 4 April 2014. The UAVSAR Repeat Pass Interferometry (RPI) products show uplift that is consistent with
the location of themain shock beneath the town of La Habra (Figure 3). The results also show considerable aseis-
mic northward horizontal deformation with minor uplift in the West Coyote Hills, south of the relocated seismi-
city. A small narrowband of shorteningwas also observedwith UAVSAR, and confirmedwith on the ground field
observations, at the Trojan Way Kink Band, nearly one fault dimension southwest of the main rupture.

UAVSAR data can have large errors on the scale of several km from unmodeled aircraft motion and troposphere
error, but it is very precise over a few hundred meters. Both error sources are of a short duration. The results of
the image pairs we show here were for lines flown with opposite looks hours apart on 22 January 2014, and
4days apart following the earthquake and troposphere errors would not be correlated. The results near the
epicenter are consistent with spaceborne InSAR images of the event [Fielding et al., 2015]. The UAVSAR mea-
surements were optimally oriented to detect the northward motion of the West Coyote Hills and shortening
of the Trojan Way kink band. The northerly tracks of the spaceborne radar assets were subparallel to the direc-
tion of motion of those two features and as a result were not sensitive to motion in the northerly direction.

3. Several Structures Produce the Observed Deformation

Movement on several active geological structures is necessary to produce the observed ground deformation. We
inverted the GPS and UAVSARmeasurements with numerous starting nominal fault parameters to determine the

Figure 3. UAVSAR observations spanning the La Habra earthquake. The inset location map shows Southern California with
the 2007 forecast for likely earthquakes shown as red areas. (top left) Northward looking lines with 08521 covering La Habra
to the south and 08523 covering the San Gabriel Valley to the north. (top right) The southward looking lines with 26522
covering La Habra and 26524 covering the San Gabriel Valley. (bottom) The region around La Habra. The circle shows the
detail of the Trojan Way kink band observed with UAVSAR. The discontinuity across the tracks is due to the ground ele-
vation or look angle varying by 40° across the swath due to the aircraft flying at a much lower elevation than a spacecraft.
The overlapping swaths cannot be matched without making assumptions about ground deformation.
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structures responsible for the observed deformation field. We use the χ2/dof to determine the goodness of fit.
The χ2/dof for the final model here is 1.3. Our best fit model was built up by inverting for deformation on indi-
vidual structures in subregions identified by surface deformation gradients in the GPS or UAVSAR data.
Because all of the modeled structures are buried, we cannot identify them in the field. The data are best fit by
the following deformation sources, with parameters shown in Table 1. Left-lateral oblique thrust motion is asso-
ciated with the main shock and bounds the southeast margin of the aftershock zone. Movement occurred on
shallow low-angle northward thrusts in the West Coyote Hills and on a fairly extensive but low-slip northeast
striking northwest dipping oblique left-lateral fault crossing the Chino Hills (Figures 1–3 and Table 1). Shallow
deformation also occurred in the San Gabriel Valley and can best be explained by a pair of northeast striking
left-lateral shear zones. Shallow low-angle motion of the upper sediments can also explain the motion, but that
solution is not as robust. The suite of faults is locatedwithin an intricate structural zonewhere deformation from
regional strike-slip and thrust systems overlaps. The modeled faults represent the general characteristics of the
active structures, with the styles and locations noted emerging in the majority of the inversions.

The location of the earthquake main shock and aftershock zone is northwest of but subparallel to the Coyote
Hills segment of Puente Hills thrust fault [Shaw et al., 2002; Pratt et al., 2002]. The location, orientation, and
mechanism of the modeled main shock fault (Table 1) are coincident with the approximate location of a “tear
fault” in the Coyote Hills (CH) segment of the Puente Hills fault inferred by Shaw et al. [2002] connecting
thrust ramps beneath the West and East Coyote Hills oil fields.

Modeling reveals the presence of gently dipping shallow planes in the West Coyote Hills, West Coyote 1, and
West Coyote 2 (Table 1), which caused northward horizontal deformation of the hills. The deformation can
be seen in the interferograms as color gradients associated with the West Coyote Hills modeled structures
(Figures 3 and 4). Combining the north and south looks enables estimation of horizontal and vertical motions
(Figure 4). The combined looks indicate about 80mm of northward horizontal motion with a slight amount of
uplift totaling 5–10mm. The dips in the points along the horizontal profile at about 0.3, 0.7, and 1.1 km correlate
with roads, suggesting that the roads restrained the northward motion at the surface. The shallow depth of our
modeled faults, West Coyote 1 and West Coyote 2, suggests that they are associated with a prominent shallow
dipping structure identified on seismic reflection images by Pratt et al. [2002] as possibly an unconformity at
0.2–1.0 km depth, or they are consistent with the bedding planes indicated on themap in Figure 3 of Pratt et al.
[2002]. These structures are linked with fold growth and movement of the deeper Puente Hills thrust.

4. Shallow Deformation Reflects Strain Accumulation on Deeper Faults

There is controversy about whether a blind thrust fault, such as the Puente Hills thrust, or a strike-slip fault
poses greater hazard to the metropolitan region. Limitations of the data and models preclude us from

Table 1. Modeled Structures and Slip That Produce the Observed Deformation Field Based on Inversions of GPS and UAVSAR Observationsa

Main Shock West Coyote 1 West Coyote 2 Chino San Gabriel Pasadena

Latitude
(start/end)

33.92351°/33.90384° 33.88804°/33.89497° 33.89949°/33.89444° 34.04059°/
33.89283°

34.20739°/34.09973° 34.13619°/34.25911°

Longitude
(start/end)

�117.91991°/
�117.96282°

�117.98022°/
�117.94822°

�117.97217°/
�117.95660°

�117.60800°/
�117.89272°

�117.86546°/
�118.02372°

�118.12688°/
�117.92404°

Strike �119° 75° 111° �122° �129° 54°
Dip 70° (NW) 4° (SE) 15° (SW) 66° (NW) 55° (NW) 73° (SE)
Depth
(bottom/top)

4.6 km/3.7 km 0.2 km/0.1 km 0.2 km/0.1 km 4.0 km/0.1 km 0.7 km/0.4 km 0.2 km/0.0 km

Width 1.0 km 0.9 km 0.4 km 4.3 km 0.4 km 0.2 km
Length 4.5 km 3.1 km 1.5 km 31.0 km 18.9 km 23 km
Strike slip
(left lateral)

353mm 0.3mm �39mm 4mm 12mm 12mm

Dip slip (thrust) 490mm 31mm 49mm 3mm 33mm 4mm
Rigidity (dyne/cm2) 2.0 × 1011 8.6 x 109 8.4 × 109 8.2 × 1010 2.7 x 1011 2.2 × 1010

Moment
(dyne · cm)

5.48 × 1022 7.42 × 1020 3.17 × 1020 5.48 × 1022 7.07 × 1022 1.26 × 1024

Mw 5.1 3.2 3.0 4.5 4.5 3.4

aThe faults in the table represent the general characteristics of the structures responsible for the deformation. Total summed moment of all the modeled
segments is 6.76 × 1023 dyne · cm.
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accurately determining this; however, Myers et al. [2003] estimate a long-term slip rate of 1.3mm/yr on this
section of the Puente Hills thrust. Approximately 32mm of displacement should have accumulated since
the 1989 Whittier Narrows earthquake, which is roughly consistent with the shallow slip that we estimated.
The overlying sediments that are less compliant than deeper sediments may have relieved accumulated
strain that is still present on the Puente Hills thrust.

Shallow seismic reflection profiles along Trojan Way in the west Coyote Hills [Pratt et al., 2002; Shaw et al.,
2002; Leon et al., 2007] reveal active folding related to movement of the Puente Hills blind thrust. A 9m high
surface scarp across Trojan Way has been interpreted as the surface expression of an active synclinal axial sur-
face, or kink band, consistent with uplift and folding on the underlying Coyote Hills segment of the Puente
Hills thrust [Pratt et al., 2002]. This kink band is 9 km southwest of the main shock epicenter but shows activa-
tion in the UAVSAR repeat pass interferometry in the 22 January to 31 March 2014 pair. Our postseismic field
investigation identified a zone of cracks that correlates with UAVSAR fringes, which show 4 cm of ground
range change of the ground toward the instrument. About 10 km farther west, a narrow <145m anticline
has been identified in the geologic data as an upward termination of the Puente Hills blind thrust fault
[Dolan et al., 2003]. The orientation of our measured deformation trends more northeasterly than this
east-northeast structure but is consistent with the arcuate expression of the faults and other structures.

The modeled northeast striking shear zones in the San Gabriel Valley and Chino Hills (Figure 2 and Table 1)
are part of a series of incompletely mapped active left-lateral oblique faults in a structurally complex zone.
The modeled faults extend northeast from mapped segments of the Raymond, Elysian Park, and Puente
Hills faults. Recent moderate magnitude left-lateral strike-slip mechanism earthquakes on this system include
the 2008Mw 5.4 Chino Hills earthquake (33.95°N, 117.76°W), which is coincident with the modeled Chino Hills
structure, the 1988 Mw 4.9 Pasadena earthquake on the Raymond fault, the 1988 and 1990 ML 4.6 andML 5.2
Upland earthquakes on the buried San Jose fault, and the 1991 M5.6 Sierra Madre earthquake on the
Clamshell-Sawpit fault. Notable northeast striking alignments of seismicity include the Yorba Linda
[Yeats, 2004] and the Fontana [Hauksson and Jones, 1991] seismicity trends, which are subparallel to the
San Gabriel and Chino shear zones revealed by our inversion of UAVSAR and GPS data. The Fontana

Figure 4. West Coyote Hills UAVSAR observation for south looking line 26522. (top left) A blue line marks the south to north
profile shown in the plots. (top right) The line of sight observations show opposite change in range between the ground
and the instrument. The two looks were combined to produce estimates of (bottom left) horizontal and (bottom right)
vertical motion. A trend line is fit through the plot of vertical motion.
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seismicity trend aligns with the epicenter of the 2008 Chino Hills earthquake and projects southwestward
into the Coyote Hills segment of the Puente Hills thrust. The modeled fault connects the seismicity trend
and the Puente Hills thrust.

Our results are consistent with north-south shortening and westward escape of the crust near Los Angeles.
The La Habra earthquake that occurred at the northeasternmargin of the Los Angeles Basin reflects a broader
pattern of north-south shortening and westward escape of the upper crust [Walls et al., 1998]. This area marks
the transition between two tectonic regimes where regional right-lateral shear is accommodated by major
northwest trending faults of the Peninsular Ranges, and north-south shortening is accommodated by north
dipping thrust faults and east-west trending folds of the Transverse Ranges (Hauksson and Jones, 1991; Seeber
and Armbruster, 1995; Yeats, 2004; Yang and Hauksson, 2011).

5. Deeper Locked Faults Have the Potential to Produce a Large Earthquake

The 2014 M5.1 La Habra earthquake was a small reflection of a larger episode of deformation that occurred
concurrently with the earthquake. We used the modeled fault parameters (Table 1) and the Southern California
Earthquake Center (SCEC) Velocity 4 model to calculate the rigidity from Vs and density at the center of each
modeled structure [Kohler et al., 2003] to estimate the geodetic moment, which is the area of the fault multiplied
by slip on the fault and rigidity [Kanamori, 1978]. The seismic moment of thisM5.1 earthquake is 5.52×1011 dyne/
cm2, which is 82% of the total observed geodetic moment of 6.76×1023 dyne · cm. The geodetic and seismic
moment of the mainshock ruptures match, but the total geodetic moment is equivalent to an M5.2 earthquake.
The earthquake main shock accounts for 100% of the geodetic moment estimated for the main shock fault alone.
18% of the deformation occurred regionally and aseismically.

The observed ground deformation could represent release of accumulated tectonic strain or be the result of
dynamic shaking along weaker structures than the surrounding area. If it is related to release of accumulated
strain, then it provides an estimate for the amount of strain accumulated at depth that has not yet been
released. Using the observed slip and modeled structures as a guide, we estimate the potential for a future

Figure 5. Gutenberg-Richter relation for a 100 km radius circle from the La Habra earthquake epicenter since the 1994M6.7
Northridge earthquake. Top right inset shows the region of interest. Table shows the probably of occurrence of events
of different magnitude of different time frames. Seismicity data are from the Advanced National Seismic System (2015,
http://www.quake.geo.berkeley.edu/anss/catalog-search.html) and U.S. Geological Survey (2015, http://earthquake.usgs.
gov/earthquakes/states/events/1952_07_21.php). Inset shows a cross section illustrating the concept of slip in the upper
sediments releasing shallow accumulated strain while the lower fault segment remains locked.
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earthquake if these structures were to rupture from the base of the seismogenic zone to the base of the mod-
eled faults (Figure 5, inset). The results for a potential earthquake range from M6.1 for a seismic moment
release of 82% of the total release and a seismogenic depth of 15 km to a M6.3 event for 100% of the release
occurring seismically and a 20 km depth of the base of the seismogenic zone. Paleoearthquake evidence sug-
gests the Puente Hills blind thrust has produced earthquakes in the Mw 7.2–7.5 range in the last 11,000 years
[Dolan et al., 2003]. Using seismic data, Sleep [2015] and Roten et al. [2014] reach similar conclusions that the
upper compliant sediments relieve accumulated strain during moderate to large earthquakes: The upper-
most few hundred meters of rock fails in oscillating dynamic friction beneath Whittier Narrows [Roten
et al., 2014], and the ambient fault-normal stress relaxes during the process over time accommodating the
shallow tectonic strain [Sleep, 2015]. Repeated strong shaking keeps the shallow ambient stress at low levels.
Mori and Abercrombie [1997] find that deeper earthquakes are more likely to grow into large earthquakes,
which also suggests that strain is relieved aseismically or more regularly in the upper crust.

The Gutenberg-Richter relation for a 100 km radius circle around the La Habra earthquake epicenter for
events beginning just after the 1994 M6.7 Northridge earthquake shows a deficiency of earthquakes M> 5
(Figure 5), which is consistent with our analysis of the geodetic data. The deficit of earthquakes having
~M5 and larger can be seen relative to the scaling line. The B value shown here is consistent with B values
for Southern California determined by Mori and Abercrombie [1997] for earthquakes > 9 km depth. For the
Gutenberg-Richter relation to be completed, this deficit must eventually be filled with large earthquakes,
up to M6.2, which is consistent with the above analysis. We assign a probability to these large earthquakes
using a Weibull distribution [Weibull, 1951] and the assumption that over long times and large regions the
Gutenberg-Richter magnitude-frequency relation is linear [Rundle et al., 2012; Holliday et al., 2014; Rundle
et al., 2016]. The calculated probability for a M ≥ 6 earthquake within a circle of radius 100 km, and over the
3 years following 1 April 2015, is 35%. For a M≥ 5 earthquake within a circle of radius 100 km, and over the
3 years following 1 April 2015, the probability is 99.9%.

Our results indicate that significant ground deformation and infrastructure damage can occur beyond the
epicentral region of a moderate earthquake near Los Angeles. Identifying specific structures most likely to
be responsible for future earthquakes is difficult for this intricate network of active faults and presence of
weak slip planes. The observed widespread and largely aseismic slip may be because the Puente Hills thrust
and related faults are structurally immature [Dolan and Haravitch, 2014]. Geodetic imaging of active struc-
tures, however, can be used to identify the full extent of slip and provide a time-independent means of esti-
mating a lower bound of future earthquake potential. In the La Habra and Puente Hills area observed here,
the lower bound for a potential earthquake is M6.1–6.3.
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corrected, and this version may be considered the authoritative version of record.
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