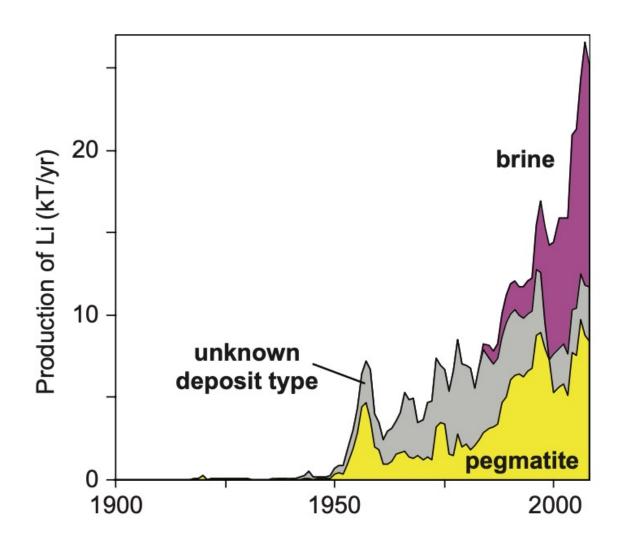

University of Nevada, Reno

Overview of Lithium Deposits in Nevada


Dr. Matthieu Harlaux University of Nevada, Reno

World Consumption of Lithium

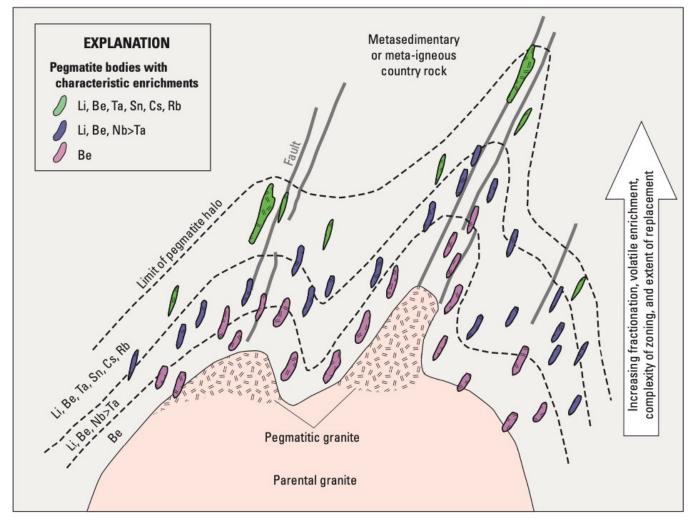

Bibienne et al. (2020) – Elements

Global Lithium Demand Forecast

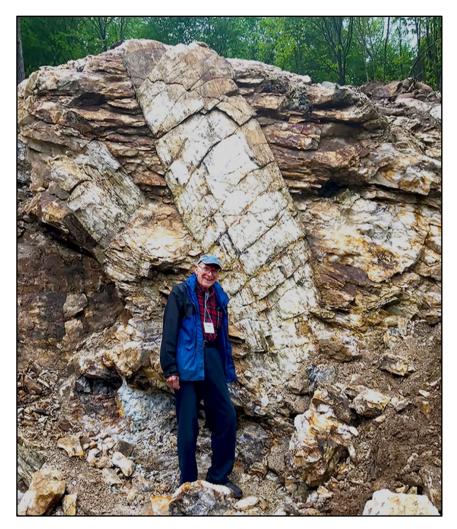
Lithium demand increase of 300-1000% by 2030

Lithium Deposit Types

Lithium pegmatites ∼30% Hard rock mining + crushing ∼25% global reserves

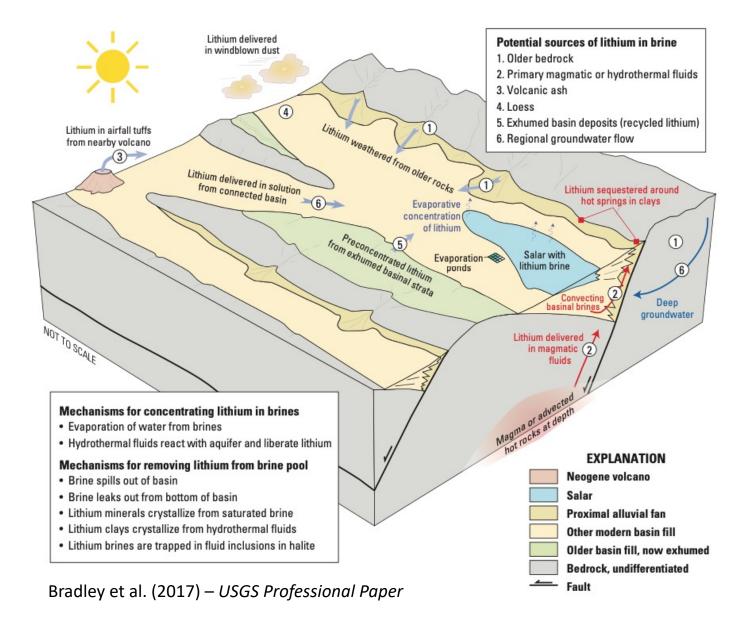


Lithium brines ∼60% Subsurface pumping ∼75% global reserves



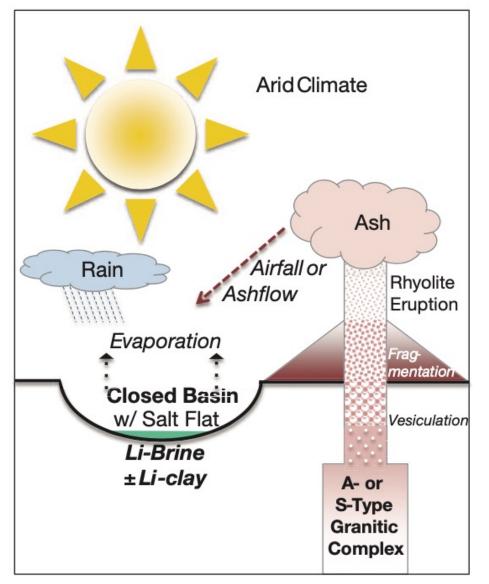
Lithium clays and others ∼10% Mining + acid leaching Global reserves not estimated

Lithium Pegmatite Deposits



Bradley et al. (2017) – USGS Professional Paper

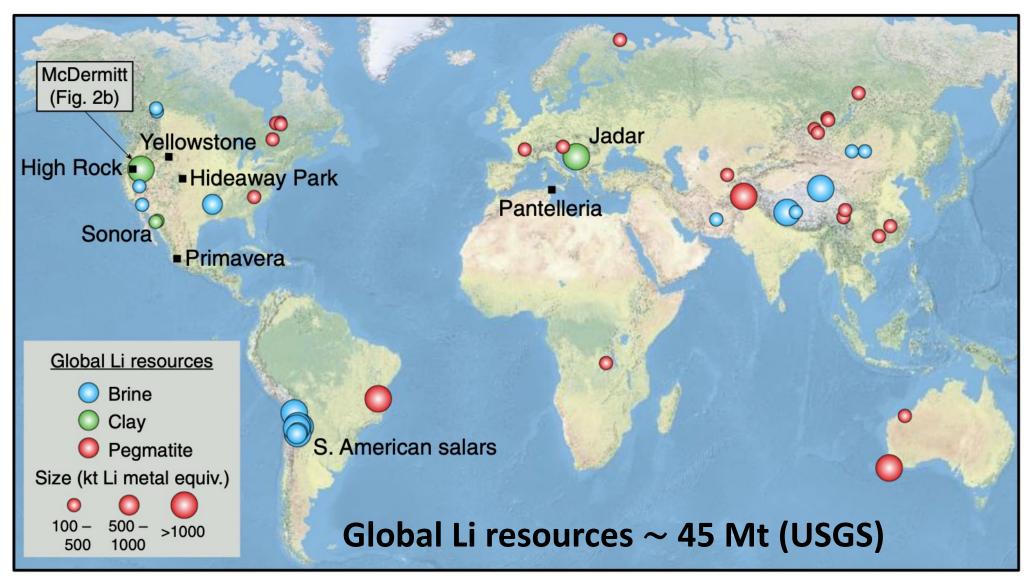
Giant spodumene (LiAlSi₂O₆) crystal in Plumbago North Pegmatite, Maine


Lithium Brine Deposits

Lithium-brine evaporating ponds at Clayton Valley, Nevada

Lithium Clay Deposits

Lithium-bearing clays of the Cave Spring Formation at Rhyolite Ridge, Nevada


Hofstra et al. (2013) – Economic Geology

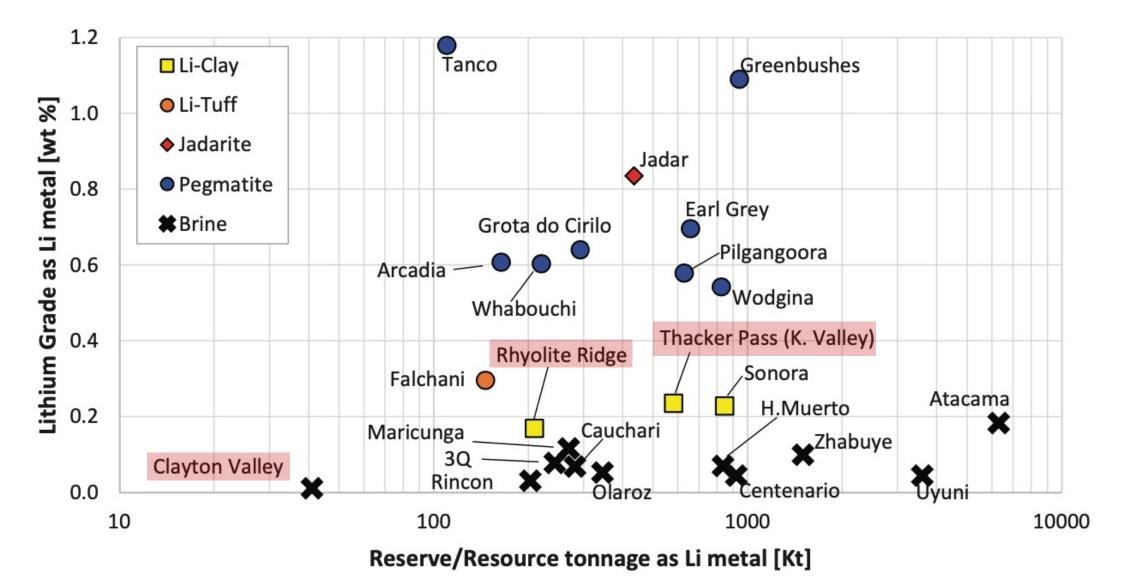
Exploration Indicators for Lithium Brines/Clays

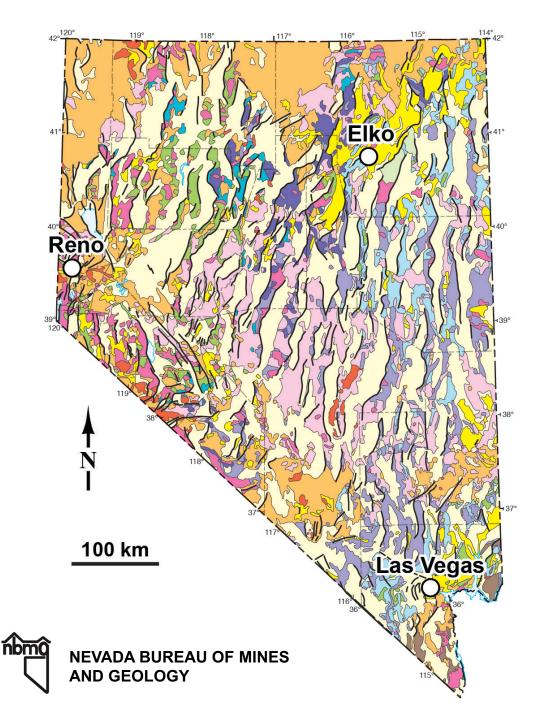
Six characteristics common to continental Li brines:

- **1**. Arid climate favoring evaporation
- 2. Closed basin containing a salar or salt lake
- 3. Associated igneous or geothermal activity
- 4. Tectonically driven subsidence
- 5. Suitable Li source rocks (tuff, ignimbrite)
- 6. Sufficient time to concentrate Li in brines/clays

World Distribution of Lithium Deposits

Benson et al. (2017) – *Nature Communications*


World-Class Lithium Deposits


Deposit	Туре	Location	tion Main Owner		Grade (wt% Li)	Resource/ Reserve
Greenbushes	Pegmatite	Greenbushes (Australia)	Tianqi Lithium	943	1.091	R ^(1,2)
Wodgina	Pegmatite	Pilbara (Australia)	Mineral Resources	826	0.543	R ^(1,3)
Earl Grey	Pegmatite	Goldfields (Australia)	Kidman Resources & SQM	658	0.697	R ^(1,4)
Pilgangoora	Pegmatite	Pilbara (Australia)	Pilbara Minerals	628	0.580	R
Grota do Cirilo	Pegmatite	Minas Gerais (Brazil)	Sigma Lithium	293	0.641	r: M+I ⁽⁵⁾
Whabouchi	Pegmatite	Quebec (Canada)	Nemaska Lithium	220	0.604	R ^(1, 6)
Arcadia	Pegmatite	Harare (Zimbabwe)	Prospect Resources	164	0.608	R ⁽⁷⁾
Tanco	Pegmatite	Manitoba (Canada)	Sinonime Rare Metals	110	1.180	R ⁽⁸⁾
Atacama	Brine	Atacama (Chile)	SQM; Albermarle	6,300	0.184	R ⁽⁹⁾
Uyuni	Brine	Oruro and Potosí (Bolivia)	COMIBOL	3,600	0.045	R ⁽⁹⁾
Zhabuye	Brine	Tibet (China)	Tibet Shigatse & Tianqi	1,500	0.100	R ⁽¹⁰⁾
Centenario	Brine	Salta (Argentina)	Eramet	921	0.045	r: M+I ⁽¹¹⁾
Hombre Muerto	Brine	Catamarca (Argentina)	Livent	835	0.071	R ⁽¹¹⁾
Olaroz/Cauchari	Brine	Jujuy (Argentina)	Orocobre	345	0.053	r: M ⁽¹²⁾
Cauchari	Brine	Jujuy (Argentina)	Lithium Americas & Exar	282	0.069	R ^(11,13)
Maricunga	Brine	Atacama (Chile)	Minera Salar Blanco	269	0.117	R ⁽¹⁴⁾
3Q	Brine	Catamarca (Argentina)	Neo Lithium	243	0.079	R ^(11,15)
Rincon	Brine	Salta (Argentina)	Argosy Minerals	203	0.032	R ⁽¹¹⁾
Clayton Valley	Brine	Nevada (USA)	Pure Energy Minerals	41	0.012	R ⁽¹⁶⁾
Sonora	Li-Clay	Sonora (Mexico)	Bacanora & Ganfeng	845	0.229	R ^(1,17)
Thacker Pass	Li-Clay	Nevada (USA)	Lithium Americas	582	0.236	R ^(1,18)
Rhyolite Ridge	Li-clay	Nevada (USA)	Inoneer Resources	209	0.170	r: M+I ⁽¹⁹⁾
Falchani	Li-Tuff	Puno (Peru)	Plateau Energy Metals	146	0.296	r: I ⁽²⁰)
Jadar	Jadarite	Jadar (Serbia)	Rio Tinto	435	0.836	r: l ⁽²¹⁾

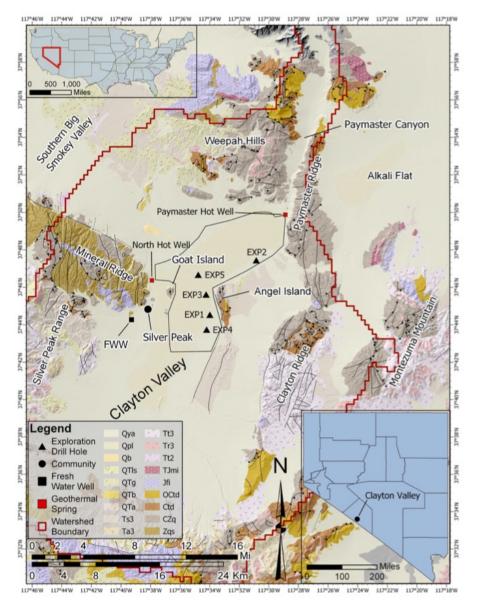
Bowell et al. (2020) – *Elements*

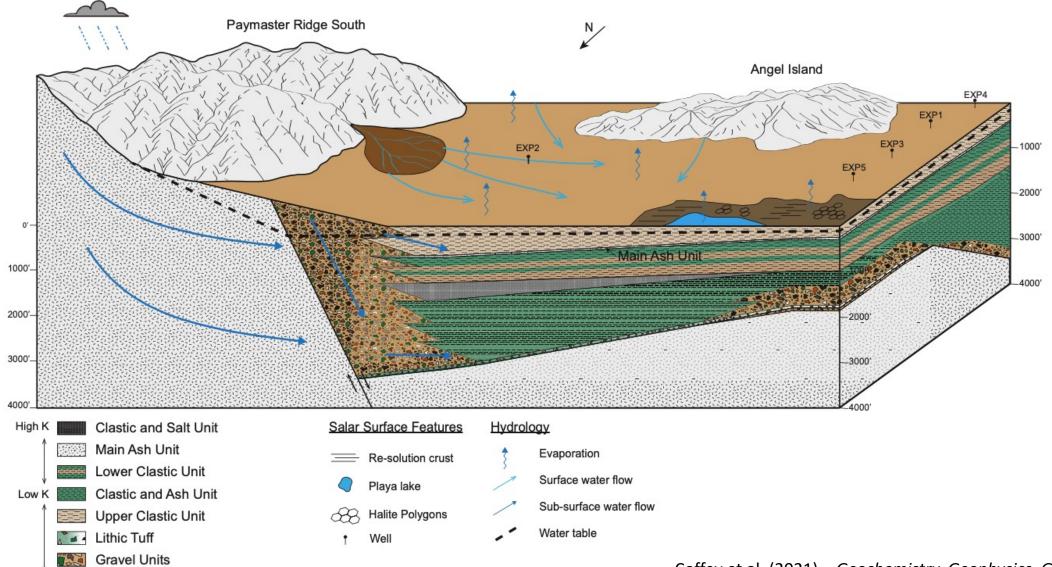
R = reserve; r = resource; M = measured; I = indicated

Grade vs. Tonnage of Lithium Deposits

Generalized Geologic Map of Nevada

County boundaries Quaternary and suspected Quaternary faults, less than 1.6 Ma (million years old), dashed where age uncertain Lakes and reservoirs Alluvial and playa deposits Volcanic rocks, less than 6 Ma Upper volcanic rocks, 6-17 Ma Tuffaceous sedimentary rocks, 6-17 Ma Lower volcanic rocks, mostly 17-43 Ma Intrusive rocks, Mesozoic and Tertiary Igneous and metamorphic complex, Jurassic or Cretaceous Sedimentary, volcanic, and intrusive rocks, Mesozoic Sedimentary and volcanic assemblage, upper Paleozoic Carbonate and other sedimentary rocks, upper Paleozoic Sedimentary and volcanic assemblage, lower Paleozoic Carbonate and other sedimentary rocks, lower Paleozoic and Late Proterozoic Metamorphic and intrusive rocks, Early and Middle Proterozoic

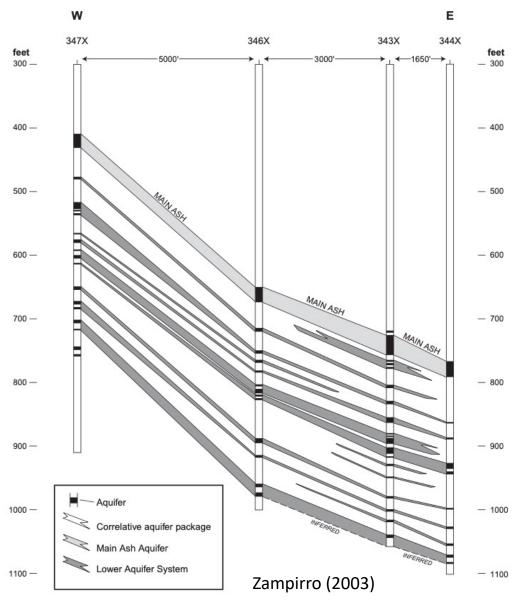

- Only-producing Li mine in the U.S. and in North America
- Operated by Albemarle
- Ongoing exploration by Pure
 Energy Minerals


Lithium-brine evaporating ponds at Clayton Valley, Nevada (Albemarle)

Regional Geology

- Late Neoproterozoic-Paleozoic sedimentary rocks deposited along the west margin of the North American craton
- Jurassic-Cretaceous granitoids (155 to 85 Ma) related to the Sierra Nevada Cordillera
- Basin & Range extension commenced during Miocene at 16 Ma
- Late Miocene to Pleistocene tuffaceous lacustrine sediments during wetting/drying periods

Coffey et al. (2021) - Geochemistry, Geophysics, Geosystems


High K Undifferentiated Fractured Bedrock

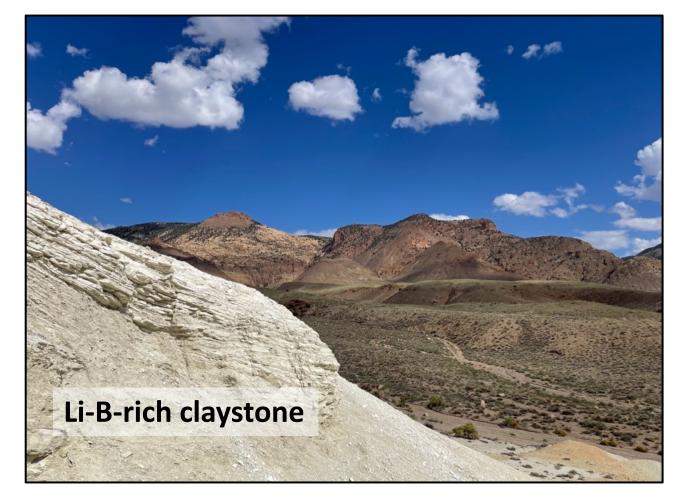
Coffey et al. (2021) – Geochemistry, Geophysics, Geosystems

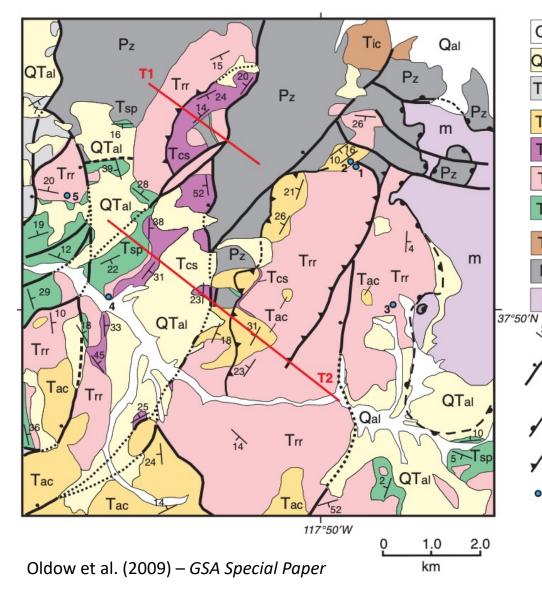
Hydrogeology

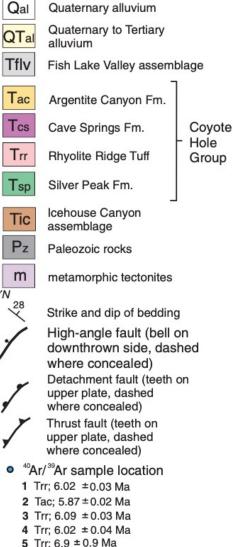
- Six main aquifers
- Ash, tuff, gravel, silt, and sand units
- Freshwaters: <1 μg/L Li
- Groundwaters/springs: 1-40 mg/L Li
- Brines: 200-400 mg/L Li

Inferred Resource Estimate for Lithium

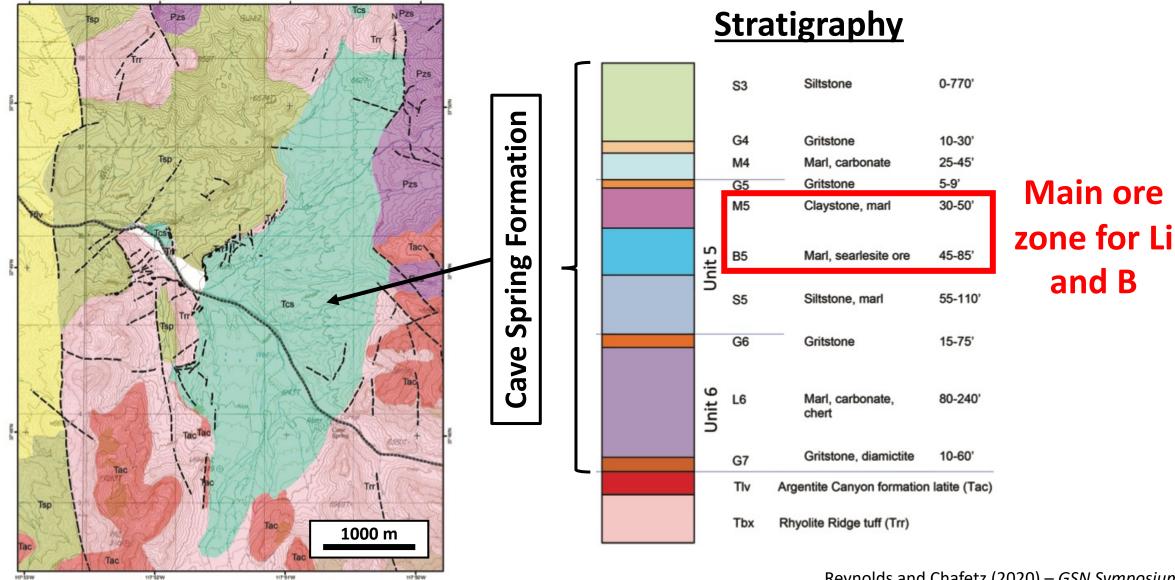
PURE ENERGY MINERALS	Average Lithium Concentration in Brine Volume (mg/L)	Brine Volume (m³) x 10 ³	Average Specific Yield	Drainable Brine Volume (m ³) x 10 ³	Lithium (kTonnes)	LiOH∙H₂O (kTonnes)	LCE (kTonnes)
	22	550,600	0.06	33,040	0.7	4.39	3.87
Resource Volumes by	65	2,424,000	0.06	145,400	9.5	57.16	50.32
Average Lithium Concentration	132	579,200	0.06	34,750	4.6	27.73	24.41
	221	1,971,000	0.06	118,200	26.1	158.00	139.09
Total	123	5,524,000	0.06	331,500	40.9	247.3	217.7


https://pureenergyminerals.com


Lithium-boron clays

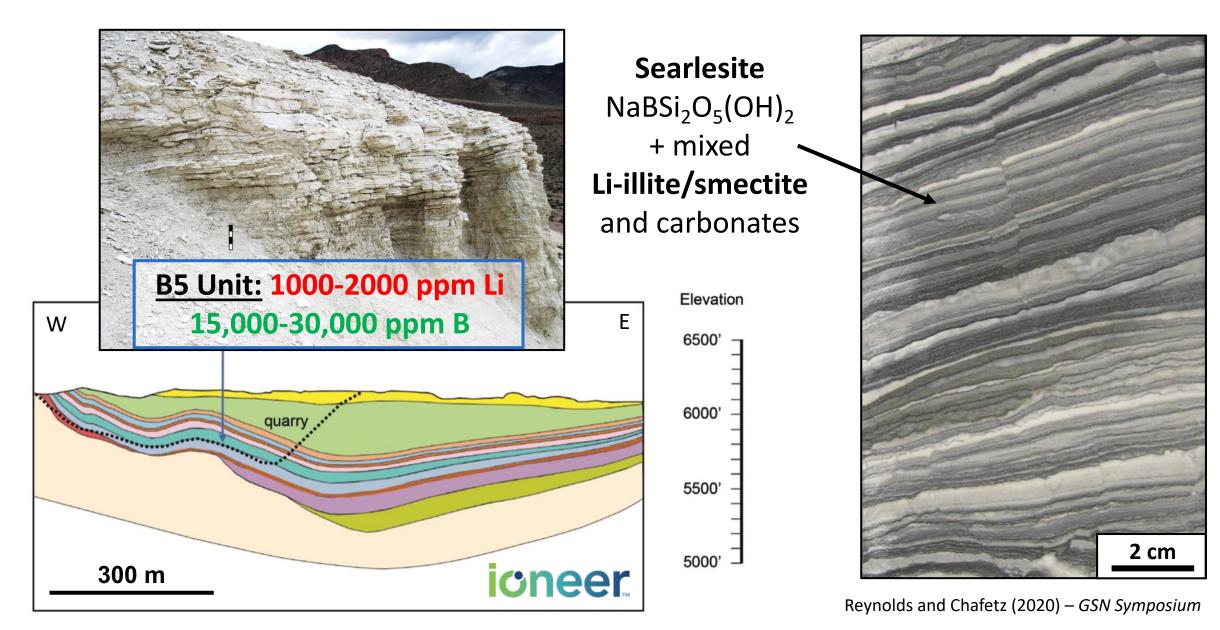

associated to late Miocene rhyolitic rocks

 Ongoing exploration by loneer


View of the Cave Spring Formation (white) overlying the Rhyolite Ridge Tuff (pink)

Regional Geology

- Paleozoic sedimentary rocks deposited on the ancient western passive margin of North America
- Late Miocene-Pliocene uplift and exhumation of metamorphic core complex
- Miocene to Pliocene volcanic and volcanoclastic rocks (~16 to 6 Ma) deposited on the Paleozoic/Mesozoic basement

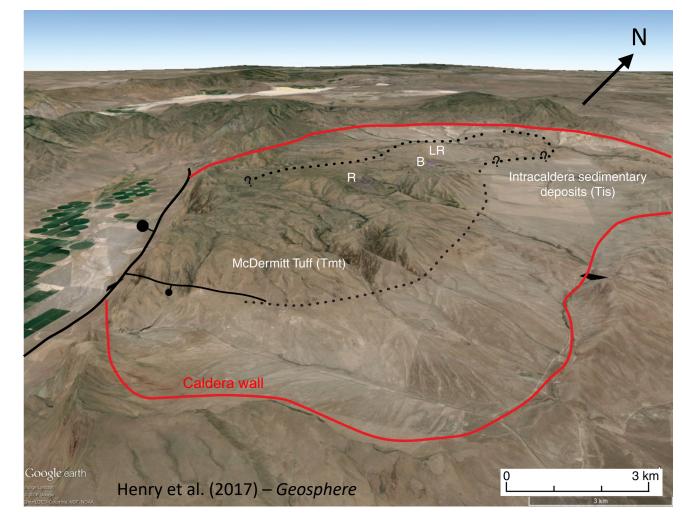


117-82W

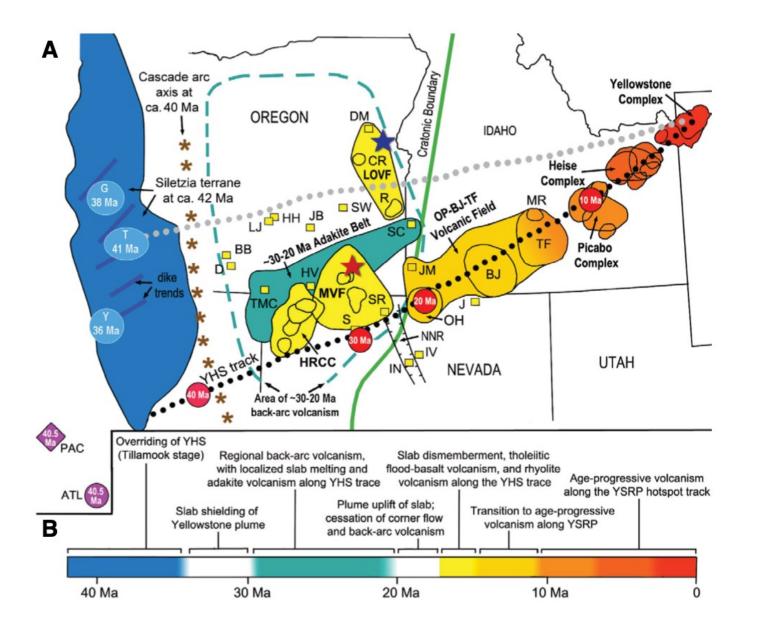
Reynolds and Chafetz (2020) – GSN Symposium

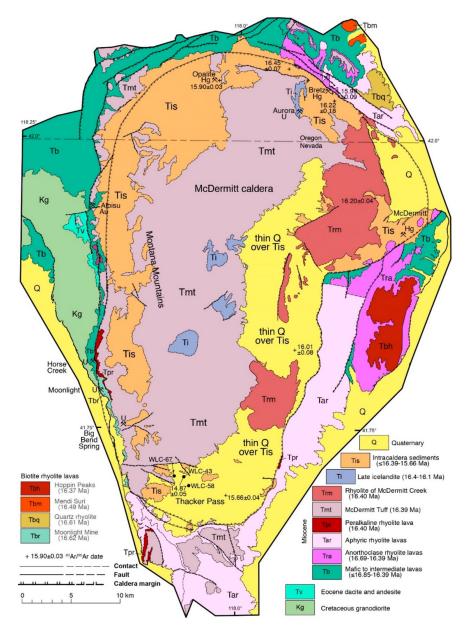
	Unit	Feet	Li	В	Mg	Ca	Rb	Cs	Na	As	Sr
	G5	455	264	80	0.76	3.69	26	9	0.04	79	917
Г		460	1680	140	4.17	5.89	44	15	0.10	77	1890
		465	1940	160	6.57	14.75	39	102	0.20	106	7390
		470	2360	280	6.28	16.75	51	147	0.37	141	>10000
Massive claystone	M5	475	2410	480	5.99	13.40	87	202	0.46	98	>10000
Li ore		480	2380	2380	6.04	13.85	98	293	0.98	85	>10000
LIVIE		485	2360	4870	6.24	15.75	50	32	1.46	42	>10000
		490	2500	6560	6.86	13.45	44	42	1.89	59	>10000
Ļ		495	2620	7080	7.26	11.80	93	56	1.93	75	>10000
Г		500	2370	12000	5.36	8.99	182	84	2.66	157	>10000
		505	2000	16000	4.10	8.12	217	97	3.19	71	9730
		510	1650	20000	3.25	7.86	264	124	2.99	71	8240
		515	1550	17000	3.37	9.31	301	135	2.89	80	8180
		520	1770	17000	3.40	10.20	349	142	3.46	77	9260
		525	1660	19000	3.45	10.25	209	119	3.95	63	9200
Et a la la maine de la comb		530	1480	26000	3.97	8.35	133	87	5.33	27	6070
Finely laminated marl	B5	535	1550	27000	3.74	6.17	260	142	5.47	33	6080
Li-B ore		540	1450	29000	2.83	5.38	309	220	5.71	63	4240
		545	1260	29000	2.16	5.16	317	211	5.77	101	3980
		550	1590	28000	2.23	4.88	418	277	5.44	173	3900
		555	1440	28000	2.69	4.66	366	230	5.31	209	4030
		560	1260	23000	2.86	5.58	305	184	4.38	116	4470
		565	1230	16000	3.82	11.15	213	135	3.32	207	4760
L		570	980	15000	3.32	7.54	105	142	3.16	323	3610
	S5	575	1020	4580	3.20	6.28	99	362	1.49	233	6530
Siltstone		580	1520	350	3.98	6.51	148	140	0.37	282	7200
		585	940	150	2.69	7.41	89	164	0.31	104	2100

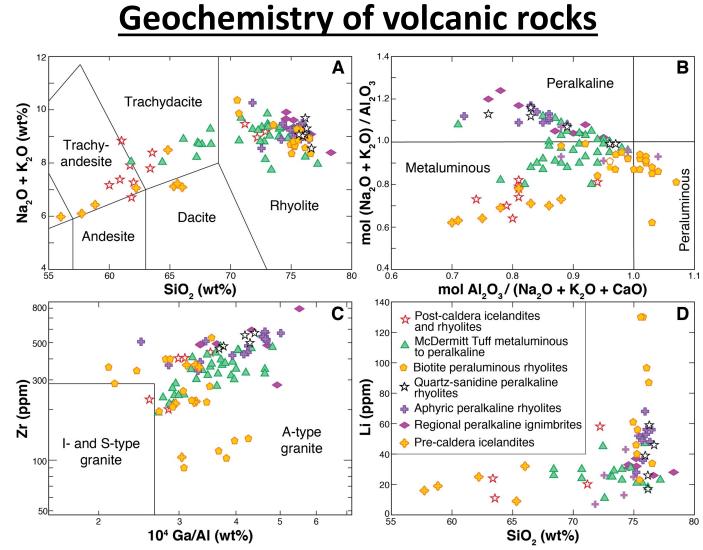
Reynolds and Chafetz (2020) – GSN Symposium



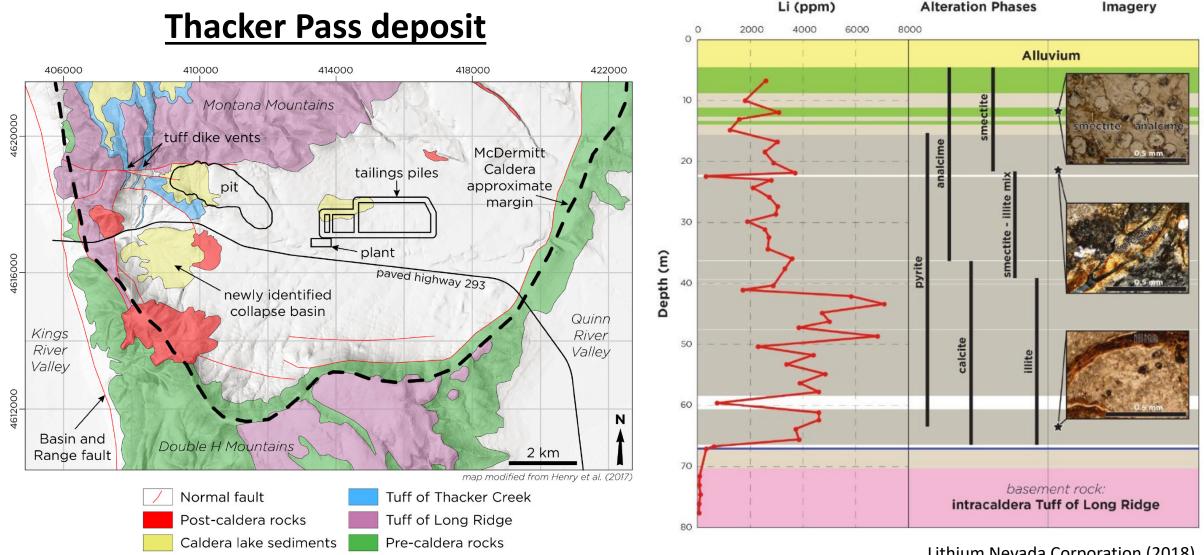
Mineral Resource and Reserve Estimate – Rhyolite Ridge Project							
	Metric Tons (Million)	Lithium (ppm)	Boron (ppm)				
Mineral Resource (Jan. 2020)							
Measured	39.0	1,700	14,550				
Indicated	88.9	1,550	14,150				
Inferred	19.5	1,600	13,800				
Total	146.5	1,600	14,200				
Ore Reserve (March 2020)							
Proved Ore Reserve	29.0	1,899	16,271				
Probable Ore Reserve	31.3	1,702	14,629				
Total Proved & Probable	60.2	1,797	15,418				
ppm = parts per million https://www.ioneer.com			ioneer				


McDermitt

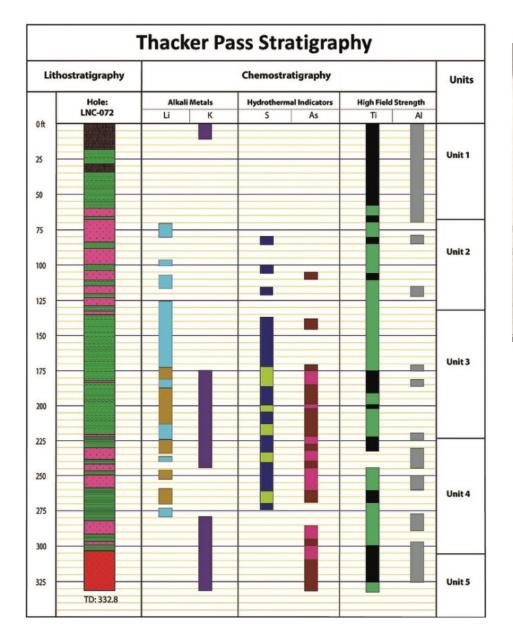

- Lithium clays associated to a Miocene volcanic caldera
- Ongoing exploration by Lithium Americas



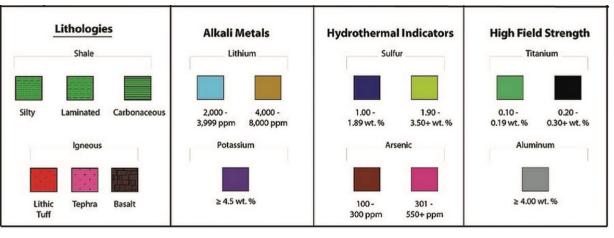
Overview of the McDermitt caldera looking north across resurgent dome



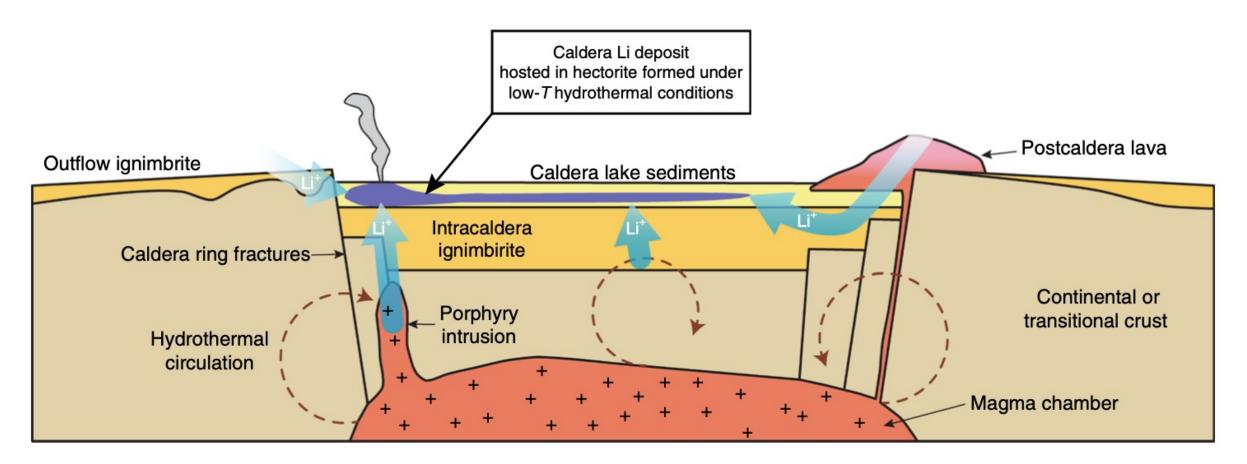
Evolution of the Yellowstone hotspot track relative to the North American plate



Modified from Castor and Henry (2020) – Minerals



Lithium Nevada Corporation (2018)



Hectorite Na_{0.3}(Mg,Li)₃ (Si₄O₁₀)(OH)₂ Li-smectite

Ingraffia et al. (2020) – GSN Symposium

Conceptual model for the formation of caldera-hosted Li clay deposits

Mineral Resources	Tonnage ('000 metric tonnes)		erage Li pm)	Eq	hium Carbo uivalent (LC 00 metric to	E)
Measured	242,150	2,9	2,948		3,800	
Indicated	143,110	2,8	2,864		2,182	
Measured and Indicated	385,260	2,9	17	5,9	5,982	
Inferred	147,440	2,9	32	2,3	01	
Mineral Reserves	Tonnage ('000 metric tonnes)		Average Li (ppm)	LC ('(E 100 metric 1	tonnes)
Proven	133,944		3,308	2,3	58	
Probable	45,478		3,210	7	77	
Proven and Probable	179,422		3,283	3,7	35	
				0		thium/

https://www.lithiumamericas.com

Outstanding Research Questions

- What are the structural controls for the development of closed basins concentrating Li in brines and clays?
- Are **anomalous heat flows** required for the formation of Li brine aquifers?
- Does hydrothermal activity play a role on lithium redistribution and enrichment in the sedimentary strata?
- What effect has the **smectite/illite transformation** on Li enrichment?
- Why are there only a few Li-rich basins in Nevada while most of them share similar characteristics?
- What makes the McDermitt caldera unique for Li mineralization along the Yellowstone hotspot track?

References

Benson, T.R., Coble, M.A., Rytuba, J.J., and Mahood, G.A., 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature communications, v. 8, p. 1-9.

Bibienne, T., Magnan, J.F., Rupp, A., and Laroche, N., 2020. From mine to mind and mobiles: Society's increasing dependence on lithium. Elements, v. 16, p. 265-270.

Bowell, R.J., Lagos, L., de los Hoyos, C.R., and Declercq, J., 2020. Classification and characteristics of natural lithium resources. Elements, v. 16, p. 259-264.

Camp, V.E., and Wells, R.E., 2021. The case for a long-lived and robust Yellowstone hotspot. GSA Today, v, 31, p. 4-10.

Castor, S.B., and Henry, C.D., 2020. Lithium-rich claystone in the McDermitt Caldera, Nevada, USA: Geologic, mineralogical, and geochemical characteristics and possible origin. Minerals, v. 10, p.68.

Coffey, D.M., Munk, L.A., Ibarra, D.E., Butler, K.L., Boutt, D.F., and Jenckes, J., 2021. Lithium Storage and Release From Lacustrine Sediments: Implications for Lithium Enrichment and Sustainability in Continental Brines. Geochemistry, Geophysics, Geosystems, p.e2021GC009916.

Henry, C.D., Castor, S.B., Starkel, W.A., Ellis, B.S., Wolff, J.A., Laravie, J.A., McIntosh, W.C., and Heizler, M.T., 2017. Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA. Geosphere, v. 13, p. 1066-1112.

Hofstra, A.H., Todorov, T.I., Mercer, C.N., Adams, D.T., and Marsh, E.E., 2013. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the Western United States: implications for the origin of lithium-rich brines. Economic Geology, v. 108, p. 1691-1701.

Ingraffia, J.T., Ressel, M.W., and Benson, T.R., 2020. Thacker Pass Lithium Clay Deposit, McDermitt Caldera, North-Central Nevada: Devitrification of McDermitt Tuff as the Main Lithium Source. Geological Society of Nevada Symposium Reno, p 395-410.

Munk, L.A., Hynek, S.A., Bradley, D., Boutt, D., Labay, K., and Jochens, H., 2016. Lithium brines: A global perspective. Reviews in Economic Geology, v. 18, p. 339-365.

Oldow, J.S., Elias, E.A., Ferranti, L., McClelland, W.C., McIntosh, W.C., and Cashman, P.H., 2009. Late Miocene to Pliocene synextensional deposition in fault-bounded basins within the upper plate of the western Silver Peak–Lone Mountain extensional complex, west- central Nevada. Geological Society of America Special Paper, v. 447, p. 275–312.

Reynolds, J.T., and Chafetz, D.A., 2020. Geology of the Lithium-Boron Rhyolite Ridge Project, Silver Peak Range, Esmeralda County, Nevada. Geological Society of Nevada Symposium Reno, p 435-450.

Bradley, D.C., Stillings, L.L., Jaskula, B.W., Munk, L.A., and McCauley, A.D., 2017. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. U.S. Geological Survey Professional Paper 1802, p. K1–K21.

Simmons, W.B., Falster, A.U., and Freeman, G., 2020. The Plumbago North pegmatite, Maine, USA: a new potential lithium resource. Mineralium Deposita, v. 55, p. 1505-1510.

Zampirro, D., 2003. Hydrogeology of Clayton Valley brine deposits, Esmeralda County, Nevada. In Proceedings of the 39th Forum on the Geology of Industrial Minerals, p. 271-280.