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Las Vegas Valley
Fault System

Known Late Quaternary Faults
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Eglington scarp. View towards the north.
Photograph taken by John Bell of the Nevada
Bureau of Mines and Geology.




Bonanza Road fault scarp — Cashman Field fault zone
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Whitney Mesa
fault zone

Photograph by
Lindsey in 1980




Set back from fault along the Whitney Mesa fault zone




Many Decades of Debate about the
Earthquake Threat in Las Vegas Valley

Maxey and Jameson (1948): hydro-compaction (non-tectonic) origin to fault
scarps,

Mindling (1965): first mention of poss. tectonic origin,

Bell (1981): found several inconsistencies with hydro-compaction origin and
suggested a tectonic component,

1996 Southern NV seismic hazard conference: tectonic component favored,

National Seismic Hazard Maps: faults set in their own category, below any impact
on hazard,

Lamichhane and others (2014) UNLV study demonstrates importance of local faults
to seismic hazard,

dePolo and Taylor (in prep.): strongly advocate an earthquake threat from these
faults, develop preliminary hazard values.
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boundary between bedrock and valley fill
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Sand and gravel, little silt, clay, and caliche

@ Sand and gravel, some silt and clay, little caliche

2 ;° ;I Clay and caliche, much gravel and sand

E Clay and caliche

m Blue clay
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Fault. "U" indicates upthrown block

Maxey and Jameson (1948)
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The Case for an Earthquake Hazard
in Las Vegas

Earthquakes occur in and around the valley.

At least one local fault, Frenchman Mountain fault, is
considered to be 100% tectonic.

Basement appears to be offset below faults and they
appear to be forming the basin (so at least a tectonic
origin).

Evidence of rapid surface offsets appear to have been
from paleoearthquakes.
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Recent Event Strike-Slip Displacement

e Common for small Las Vegas earthquakes to be
strike-slip,

* Older faults within basin has strike-slip motion in
the geologic past,

* Geodetic modeling suggests shear deformation,

e Larger strike-slip earthquakes are a possibility.
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Lamichhane et al. (2014)

441 locations, ~ 3 km grid

UNLV Seismic Hazard Study
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dePolo and dePolo, 2012




(1) 1935-1936 Initial filling
M

Small earthquakes @ * % v

(2) 1936-1938 4 4 Continued filling = Whole rock diffusion
[ Fault zone diffusion

Larger, more extensive @/ " v Response of initial pore-pressure
earthquakes - (* x diffusion along faults
(3) 1939

Initial elastic/poro-elastic response

Whole rock diffusion

filling

SR

Complete
e [1 Fault zone diffusion

Largest
earthquake =

Fault zone diffusion extensive

Whole rock diffusion
[ Fault zone diffusion

hole rock diffusion expands but
fault zone diffusion dominates

(4) 1940-1945
Earthquakes cor-
relate with annual
peak lake levels

Nearly full

B

(5) 1946-1952
Earthquakes cor-
relate with annu-
al minimum lake
levels

Whole rock diffusion

[ Fault zone diffusion
Whole rock diffusion complete,
reservoir unloading dominates

Nearly full

(6) 1953-1958 4 f Rapid filling in 1957 and 1958
Reservoir low

Whole rock diffusion

[] Fault zone diffusion
Expanding fault zone diffusion
from rapid filling dominates

Large earthquake
in 1958 after peak

filling - (3K

4 Rapid filling in 1962 Whole rock diffusion
__ [ Fault zone diffusion
4 Expanding fault zone diffusion

from rapid filling dominates

(7) 1959-1963
Large earthquake
in 1963 after peak

filling - (¥

Whole rock diffusion

[1 Fault zone diffusion
/Whole rock diffusion complete,
reservoir unloading dominates

(8) 1963-1965

M > 4 earth-
quakes during
rapid reservoir
unloading

Whole rock diffusion
3 Fault zone diffusion

Both diffusion mechanisms

(9) 1966-present

Only magnitude
<4earthquakes (5 4§

Figure 4-16. Schematic diagram of the time evolution of reservoir-induced seismicity near Hoover Dam.

400IIIIII[II|]IIIIIIII|IIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
- a— Earthquakes Start 7
r Largest eq. M5 T
350 » -

E

=" 2014 level g

=)

= i K

>

0

o L _

3

S 300 =

=

== | L 4

()

B L N ]

§ High Earthquake Energy | Low Earthquake Energy

2 I Mpax = 5.0 M pax = 3.9 1

< L ’ ; i
Sl - P | — - |
200IIIIIIIII|IIIlII||I||III|lI|III|I|IIIIIII|IIII[I||IIIIIIIIlIIII
1930 1940 1950 1960 1970 1980 1990

Year

Figure 4-17. Lake Mead surface elevations from February 1935 (initial filling) to the end of September
1992. See Fig. 4-18 for annual earthquake energy for the same time period.

Reservoir-Induced Earthquakes

U.S. Bureau of Reclamation (1993)
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Nevada’s Major Earthquake History



Pr[M 6 or greater] within 50 km and 50 yr
e e e ——— e mmm——
0.000.050.100.150.20 0.25 0.30 0.35 0.4C 0.450.50 0.55 0.60 0.650.70

Wells 12% chance

M6 earthquake
occurred
Feb. 21, 2008




S arem consequences,

ilities of occ%rrence.



HAZUS Earthquake Loss Modeling

* M 6 near Las Vegas had modeled losses of
about $3B*.

* M 7 near Las Vegas had modeled losses of
about $21B*.

* Estimates are +/- a factor of 10



Potential Unreinforced Masonry Buildings
In Nevada*:

7,354 Residential
16,145 Commercial & Public (city & county)
08 State-owned
23,597 TOTAL*

* The total does not include buildings owned by the federal government.
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Strategy to Deal with URMs a
Challenge

* Economically very difficult to impossible,

 Life-safety rehabilitation can still lead to a
nost-earthquake loss of the building (limited
oenefit to cost breadth),

 We are currently accepting the risk.



Many, Many Good Buildings in Las
Vegas — Contents and Nonstructural
Threats

e Safety needs to be considered
— during the event (preventing injuries)
— immediate post-event
— emergency response

* Value/costs need to be considered
— protecting valued items



Earthquake Disaster Response Plan
and Capability

Generally good response and mitigation plans,
Good familiarity with and practice of plans,
Some enhanced resources in communities,
Generally good personnel training,

Strategies are in place to periodically enhance
plans,

Detailed earthquake planning scenario could
enhance response plans.



Recovery Plan Critical

* Response and handling of visitors — first PR
for recovery. Will the visitor exodus be
coordinated to minimize response impedance,
visitor suffering, and other negative impacts?

* Can people/businesses get reestablished?
Information, inspections, physical help, trash
bins, advise, utilities, reconstruction loans.



Recovery Plan Critical

* Post-earthquake environment difficult to
plan in and recovery has to happen as quickly
as possible. Helps people feel they are getting
back in control; minimize business
Interruption; pre-strategize recovery resources
and needs.

 Engage as soon as emergency response needs
wind down — need pre-event recovery plan.



Some Conclusions

* Definite earthquake disaster potential in Las
Vegas that needs to be seriously prepared for,

* Detailed earthquake disaster planning scenario
excellent tool for visualizing situations and
potential actions, and motivating preparedness,

* Have a detailed recovery plan ready before the
next disastrous earthquake.



